Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers
نویسندگان
چکیده
Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons.
منابع مشابه
Monocarboxylate Transporters (MCTs) and their Role in Hypothalamic Glucosensing
Monocarboxylate transporters (MCTs) have a high capacity to transport short-chain monocarboxylates, such as lactate, Pyruvate and the ketone bodies (KB), α-hydroxybutyrate and acetoacetate, which have a role in energy balance. In the brain, lactate is an important oxidative energy substrate [1], and its intracerebroventricular (ICV) administration decreases both food intake and blood glucose le...
متن کاملComparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons.
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with a Km value for lactate of 7.7 mM and a Vmax value of 250 nmol/(min x mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds kn...
متن کاملBiol. Pharm. Bull. 28(1) 1—8 (2005)
key role in vision, has a blood-retinal barrier (BRB) to maintain a constant milieu and shield the neural retina from the circulating blood. The BRB forms complex tight junctions of retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (RPE; outer BRB). The inner two thirds of the human retina is nourished by retinal capillaries and the remainder is covered by cho...
متن کاملCellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions.
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localiza...
متن کاملExpression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain.
Under particular circumstances like lactation and fasting, the blood-borne monocarboxylates acetoacetate, beta-hydroxybutyrate, and lactate represent significant energy substrates for the brain. Their utilization is dependent on a transport system present on both endothelial cells forming the blood-brain barrier and on intraparenchymal brain cells. Recently, two monocarboxylate transporters, MC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012